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Strict formulas for calculating the aerodynamic forces acting on a section of an airfoil with a penetrable re-
gion, through which a part of an external flow of an ideal incompressible fluid is sucked in, and on an airfoil
section, from which a jet stream is blown out, in the case where these sections are in a steady-state flow
without separation have been derived. Formulas for calculating the power expended for the realization of suc-
tion of a part of an external flow through an airfoil section and simultaneous blow-out of a jet stream from
it are proposed.

To formulate and solve the boundary-value problems on the aerohydrodynamics of airfoil sections with pene-
trable regions through which suction or blow-out are realized, it is necessary to know the aerodynamic forces acting
on these airfoil sections. Note that we take the phrase forces acting on an airfoil section to mean forces acting on a
unit, in width, element of an airfoil section of infinite dimension. We will consider a steady-state flow without sepa-
ration around an airfoil section.

In [1], where the blow-out of a flow of an incompressible ideal fluid was investigated, the main vector of the
forces acting on an isolated airfoil section with a penetrable region, around which an incompressible ideal fluid flows,
was determined by the Chaplygin formula
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Integration over a closed airfoil outline Lz with a penetrable region MN was performed in a counter-clockwise direc-
tion (Fig. 1).

For an airfoil section with suction, the conjugate velocity v
_

 = dw/dz of a flow in the neighborhood of a point
at infinity in the region Gz can be represented, according to [1], in the form of the Laurent series
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Here, Q < 0 for an airfoil section with suction and Q > 0 for an airfoil section with blow-out; the positive circulation
Γ is performed in a counter-clockwise direction, and the direction of the abscissa axis is coincident with the direction
of the velocity vector v∞ of the incident flow. Since the flow considered has no distinctive features, we will pass from
the integration over the outline Lz to a ring outline LR of infinitely large radius. Substitution of expansion (2) into for-
mula (1) gives
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after simplifications, we obtain the expressions

Rx − iRy = 
ρi
2

 v∞ 
Q − iΓ

π
 ln exp (2πi) = − ρv∞ (Q − iΓ) ,

from which it follows that

Ry = − ρΓv∞ ,   Rx = − ρQv∞ . (3)

The first formula of (3) represents the known Zhukovskii theorem on the aerodynamic lift, and the second formula is
also a Zhukovskii formula given in [2].

It follows from formulas (3) that, for an airfoil around which a steady-state flow of an incompressible ideal
fluid without separation flows, the aerodynamic lift Ry and the drag force Rx are directly proportional to the circulation
of the flow velocity and the flow rate respectively. Thus, if the rates of flow around airfoil sections with suction are
equal, the drag forces of these sections will be equal independently of the location of penetrable regions and the angle
at which the suction is realized. Formula (1) was derived with assumptions from [3, pp. 192–195], which are true only
for impenetrable airfoil sections; for example, it was assumed that the flow velocity is directed, everywhere, along the
tangent line to the outline Lz of an airfoil. Taking into account the foregoing, we will perform strict derivation of for-
mulas (1) and (3) for calculating the aerodynamic forces acting on an airfoil section with a penetrable region. More-
over, we will present and substantiate formulas for calculating the aerodynamic forces acting on an airfoil section,
from which a jet stream with a total pressure and a density different from those of the external flow is blown out.
Finally, we will present formulas for calculating the power expended for the realization of suction of a flow of an in-
compressible ideal fluid through an airfoil section and simultaneous blow-out of a jet stream from it.

Derivation of a Formula for an Airfoil Section with Suction of an External Flow. We will consider the
region ds of the outline Lz of an airfoil with suction. The force acting on this region is equal, in accordance with the
momentum-conservation law, to

dR = − [pn + ρ (v, n)  v] ds ,

where n is the vector of the normal to the outline (Fig. 2). Having performed integration over the outline Lz, we will
find the force vector R:

R = �
Lz

 dR = �
Lz

 [− p0n + ρ (v, v) n ⁄ 2 − ρ (v, n) v] ds . (4)

Fig. 1. Airfoil section in a fluid flow.
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In the case of suction of a flow, p0 = const throughout the flow region.
Let us pass to complex variables. Note that

τ = exp (iθ) ,   n = − i exp (iθ) ,   dz = exp (iθ) ds ,   ds = exp (iθ) dz
__

 = exp (− iθ) dz ,

vτ = vτ exp (iθ) ,   vn = − ivn exp (iθ) ,   v = vτ + vn = (vτ − ivn) exp (iθ) .
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Substitution of these variables into (4) gives 
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After simple rearrangements, we obtain
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Since the integral of the constant quantity p0 over the close curve Lz is equal to zero, we will obtain, having
performed complex conjugation, the following formula for the resultant force acting on an airfoil section with a pene-
trable region:
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which is entirely identical to the Chaplygin formula (1). Consequently, formula (1) can be used for calculating airfoil
sections with a penetrable region, as was done by V. V. Golubev in [1].

The aerodynamic-lift coefficient cy and the drag coefficient cx, related to the chord b of the section and the
velocity v∞ of the incident flow, will be equal, according to (3), to

cy = − 2γ ,   cx = − 2q ,   γ = Γ ⁄ bv∞ ,   q = Q ⁄ bv∞ . (6)

Derivation of a Formula for an Airfoil Section with Blow-Out of a Jet Stream to the External Flow. As
was shown above, formulas (1) and (3) can be used for penetrable airfoil sections with suction of a flow. However,
in the case where a jet is blown out of an airfoil section, the density and total pressure of the liquid in this jet can
differ from those in the external flow. In this case, formulas (1) and (3) will be incorrect. This is explained by the
fact that, at the interface between the external flow and the jet, the tangential component of the flow velocity will be
disrupted, with the result that the function of the complex-conjugate velocity will become piecewise-analytical. At the
same time, formula (5) remains true also in the case where the densities and total pressures of the jet and the external

Fig. 2. Region of the airfoil outline Lz.
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flow are different, because this formula was obtained with general assumptions and the indicated conditions were taken
into account at a later time. Using (5), we will obtain a formula for the aerodynamic forces acting on airfoil sections
with blow-out of a jet stream.

Let the density ρj and the total pressure pj0 of a jet blown out of an airfoil section differ from the density
ρ and the total pressure p0 of an external flow. Therefore, the tangential velocity components PP′ and BB′ of a down-
flow will be disrupted (Fig. 3). The points B and P divide the outline Lz of the airfoil section into two parts: the part
in contact with the external flow Lz1 and the part in contact with the blown-out jet Lz2. For simplicity, we will inves-
tigate the case of distributed blow-out where a penetrable region is located on Lz2 (the case of slot blow-out can be
investigated analogously). Let us consider two fluid volumes bounded by the closed outlines Lz1 2 l1 2 LR1 2 l4 and
Lz2 2 l3 2 LR2 2 l2, where LR1 and LR2 are the arcs of a circle of infinitely large radius.

The force acting on the airfoil section will be equal to
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The functions p0(z) and ρ(z) involved in the integration elements are equal to p0 and ρ for the external flow (Gz) and
ρj0 and ρj for the jet (Gjz). The complex-conjugate velocity of the flow in the regions Gz and Gjz is equal to
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where Q
~

/2π and −Γ
~

/2π are the real and imaginary parts of the expansion coefficient of the function dw/dz at z−1 in
the neighborhood of a point at infinity in the region Gz. Note that, when separations are absent in the external flow
(in the case where p0 = pj0 and ρj = ρ), the quantity Q

~
 becomes equal to the flow rate Q and the quantity Γ

~
 becomes

equal to the circulation Γ of the flow velocity over the outline of the airfoil section.
Substitution of (8) into (7) gives
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Having performed complex conjugation with the use of the Bernoulli integral, we obtain
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Fig. 3. Airfoil section with jet blow-out.
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Here, h∞ = Q/vj∞ = Q
~ ⁄ v∞. Unfortunately, we failed to find a simple relation between Γ

~
 and Γ. After simple rearrange-

ments, we obtain

Ry = − ρv∞Γ
~

 ,   Rx = − ρjvj∞Q = − √ρρj (1 + µ)  v∞Q , (9)

where

µ B 
2 (pj0 − p0)

ρv∞
2  = 

ρjvj∞
2

ρv∞
2  − 1 (10)

characterizes the energy of the blown-out jet.
Formulas analogous to (9) were obtained by N. F. Vorob’ev in [4] for the "section of an airfoil, the lower

side of which is formed by a system of guide vanes around which a flow incoming from the inner space of the airfoil
and forming a jet in the external flow flows."

The coefficients of drag (cx) and aerodynamic lift (cy) will be equal, in view of (9), to

cy = − 2γ~ ,   cx = − 2q √ρj (1 + µ)
ρ

 . (11)

Airfoil Section with Suction and Blow-Out. Calculation of the Power Expended for These Processes. It
will be assumed that, in the case of an airfoil section with suction, the fluid sucked from the external flow is not ac-
cumulated but is blown out to a flow (though not necessarily on the airfoil section). Analogously, for an airfoil section
with blow-out, the suction of a fluid from an external flow should be organized. If ρj = ρ, the resultant coefficient of
drag cx will comprise the sum of the coefficient of drag cxs (6), arising as a result of the suction, and the coefficient
of thrust cxj (11), arising as a result of the blow-out:

cx = cxs + cxj = 2q (1 − √1 + µ) .

The coefficient cx < 0 at µ > 0, which corresponds to the case of existence of a propulsive force. We will ex-
press the power expended for the above-indicated suction–blow-out in terms of the equivalent drag coefficient cxp. This
coefficient is determined from the formula presented in [5]:

cxp = ηen 
P

bv∞ρv∞
2  ⁄ 2

 . (12)

It will be assumed that the fluid of an external flow entering a blowing power plant has a total pressure p0 and the
outflowing fluid has a total pressure pj0. In this case, the power of this plant will be equal to

P = (pj0 − p0) Q ⁄ ηp .

For the coefficient cxp, we obtain, using (12), the following expression:
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ηen
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Q
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In the particular case where the efficiencies of an engine and a power plant are equal (ηen = ηp), we obtain, using
(10), the simple formula

cxp = µq .
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It should be noted that cxp + cx > 0 at any µ. As was expected, the power expended for the suction–blow-out is larger
than the power obtained from this effect, and the sum cxp + cx increases with increase in the energy of the jet blown
out.

This work was carried out with financial support from the Russian Basic Research Foundation (project No.
05-08-01153a), a grant of the President of the Russian Federation (MK-1076.2005.1), and the Federal Center of Scien-
tific and Technical Programs (RI-112/001/465).

NOTATION

b, chord of an airfoil section; ck, ck
∗, coefficients in the Laurent series; cx, drag coefficient; cxj, drag coeffi-

cient in the case of blow-out; cxp, expenditure of energy; cxs, drag coefficient in the case of suction; cy, lift coefficient;
Gjz, region of a jet; Gz, region of an external flow; h∞, width of a jet at infinity; LR = LR1 + LR2, circle of infinitely
large radius; Lz = Lz1 2 Lz2, airfoil outline; l1 − l4, downflow lines; n, vector of the normal to the outline of an airfoil;
p, pressure; P, power of a power plant; pj0, total pressure of a blown-out jet; p0, total pressure; Q, rate of a total flow
passing through an airfoil section; q, dimensionless flow rate; R, vector of the resultant force; Rx, drag force; Ry, aero-
dynamic lift; s, arc abscissa of the outline of an airfoil; v, velocity vector; vj∞, velocity of a jet at infinity; v∞, veloc-
ity of an external flow at infinity; w, complex potential of a flow; z = x + iy, coordinate in the physical plane; Γ,
circulation of the flow velocity over the outline of an airfoil; γ, dimensionless velocity circulation; ηa, efficiency of an
engine; ηp, efficiency of a suction–blow-out setup; θ, angle of inclination of the tangent to the outline of an airfoil
section; µ, dimensionless energy of a blown-out jet; ρ, density of an external flow; ρj, density of a blown-out jet; τ,
vector of the tangent to the outline of an airfoil section. Subscripts: a, engine; j, blown-out jet; k, variable of summa-
tion in an infinite Laurent series; n, normal component of a vector (projection to the normal n); p, suction — blow-out
setup (pump); s, suction; x and y, projections of a vector on the x and y axes, respectively; z, physical density; τ, tan-
gential component of a vector; ∞, characteristics at infinity; overscribed bar, complex conjugation.
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